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1. Overview
This document presents additional results and comparisons that are not put into the main paper due to space limitation.

The main content includes:
Section 2: Full qualitative results;
Section 3: EPFL datasets;
Section 4: Breakdown experiment;
Section 5: Evaluation of the negative influences;
Section 6: Comparisons of 3D curve reconstruction;
Section 7: Further explanations of Curve-conformed Delaunay Refinement;
Section 8: Runtime performance.

2. Full qualitative results
In this section, we show the qualitative results of all datasets used in our experiments.

2.1. Synthetic datasets

We have used six synthetic datasets for quantitative evaluations in the main paper in Section 4.1, namely chair, chair2,
fence, holder, lamp and pylon. Here we present qualitative results of them generated by three state-of-the-art methods, our
method and ground truth. Three state-of-the-art methods are introduced in the main paper in Section 4.1.
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Figure 1: The chair dataset. Upper: input images. Lower: mesh reconstructions by four methods and ground truth.
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Figure 2: The chair2 dataset. Upper: input images. Lower: mesh reconstructions by four methods and ground truth.
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Figure 3: The fence dataset. Upper: input images. Lower: mesh reconstructions by four methods and ground truth.
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Figure 4: The holder dataset. Upper: input images. Lower: mesh reconstructions by four methods and ground truth.
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Figure 5: The lamp dataset. Upper: input images. Lower: mesh reconstructions by four methods and ground truth.
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Figure 6: The pylon dataset. Upper: input images. Lower: mesh reconstructions by four methods and ground truth.

2.2. Real-world datasets

We have shown partial qualitative results in paper Section 4.2. Here we show all six real-world datasets. The names of
dataset, number of images and image resolution are shown in Table 1. Here we only present the results of Vu [12] method
(baseline) and our method to emphasis our improvement. The other methods (PMVS+Poisson and MVE+FSSR) perform
poorly on these datasets and produce severely flipped triangle normals. The intermediate point cloud and reconstructed curves
are shown. Note that both methods use the same set of point cloud, so the qualitative difference illustrates the effectiveness
of curves.
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Chair

Figure 7: Top: samples of input images. Left column: point cloud and mesh generated by Vu’s method [12]. Right column: point cloud
with our reconstructed curves (green) and mesh reconstruction by our method.
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Windmill

Figure 8: Top: samples of input images. Left column: point cloud and mesh generated by Vu’s method [12]. Right column: point cloud
with our reconstructed curves (green) and mesh reconstruction by our method.
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Bridge

Figure 9: Top: samples of input images. Left column: point cloud and mesh generated by Vu’s method [12]. Right column: point cloud
with our reconstructed curves (green) and mesh reconstruction by our method.
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Pylon1

Figure 10: Top: samples of input images. Left column: point cloud and mesh generated by Vu’s method [12]. Right column: point cloud
with our reconstructed curves (green) and mesh reconstruction by our method.
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Pylon2

Figure 11: Top: samples of input images. Left column: point cloud and mesh generated by Vu’s method [12]. Right column: point cloud
with our reconstructed curves (green) and mesh reconstruction by our method.
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Wires

Figure 12: Top: samples of input images. Left column: point cloud and mesh generated by Vu’s method [12]. Right column: point cloud
with our reconstructed curves (green) and mesh reconstruction by our method.
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3. EPFL datasets
The proposed method aims at improving thin structure reconstruction, but it can be applied to general datasets without

worsening the original results. Here we apply the proposed method to three EPFL datasets [9]. Although these scenes do not
contain many thin structures, and most reconstructed curves are textures or shadings on planes, these curves will be fused
into the mesh adaptively. The results are shown in Fig. 13, Fig. 14 and Fig. 15.

Herzjesu_25

Figure 13: Sample images, point cloud and curves (green), reconstructed mesh.

Fountain_8

Figure 14: Sample images, point cloud and curves (green), reconstructed mesh.
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Castle_30

Figure 15: Sample images, point cloud and curves (green), reconstructed mesh.

4. Breakdown experiment
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Figure 16: As the image resolution goes down, our method has stronger ability to recover thin structures such as armrests and legs. Here
we also improved the point-based method [12] with the soft-visibility term [4] to reduce the holes at backrests.

The proposed method is compared with a baseline method [12] by progressively lowering the image resolution, illustrated
in Fig. 16. As discussed in the main paper, the thickness of the thin structure is relative to image resolution. This experiment
simulates the case when the image resolution is low, or equivalently, the geometry structure is very thin. The result indicates
that, the point-based method breaks down at 640 × 480 resolution, while our method has stronger ability to recover thin
structures such as armrests and legs at low image resolution. Also, the 3D curve at the silhouette of backrest improves the
reconstruction of the edges of backrest.
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5. Evaluation of the negative influences
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Figure 17: The 3D curves reconstructed on sharp textures might introduce slight bumps due to inaccurate estimated positions of 3D curves
or overestimated confidence regions, but these artifacts are very minor and can be easily removed by mesh refinement [12].

As mentioned in the main paper, the reconstructed 3D curves are of three types. For those curves on sharp textures, they
imply no geometry and should be fused into the surface. One may suspect these 3D curves may introduces errors to the
reconstructed surface as they would look more bumpy than the real geometry is. In our experience, this side effect is minor,
possibly due to inaccurate estimated positions of 3D curves or overestimated confidence regions. Most of these artifacts are
non-topology flaws, but it may happen when the point cloud is so sparse that the curve of sharp edges induces topological
flaws (example in Fig. 14 bottom left). For most inaccuracies such as slight bumps or inflations over the textured edges, a
following mesh refinement can correct them.

Here, we conduct an experiment to evaluation the negative influence brought by the 3D curves. We use the data of
fountain and herjesu in [9] as the ground truth are provided. We reconstruct the surface w/ and w/o the proposed 3D curves,
and evaluate the difference before and after refinement. The results are visualized in Fig. 17. In the initial meshes, the mesh
produced by our method has slight bumps on the sharp texture. After refinement, these artifacts are eliminated and visually
the same with the refined mesh of point-based method. We also tried to measure the distance between reconstructed meshes
and ground truth meshes (using the same quantitative evaluation as in the main paper), but it turned out the gap between
point-based and our method is extremely minor and inconsistent on two datasets. This finding also conveys that the negative
influence brought by 3D curves is very minor and ignorable.

6. Comparisons of 3D curve reconstruction
The 3D curve reconstruction (Section 2 in the main paper) can be a standalone component, for the purpose of scene ab-

straction, edge drawing creation, etc. Here, we compare our method with two recently proposed methods namely, Line3D [3],
3D Drawing [11]. We use the Vase dataset (a successful example in [11]’s paper), and create the results of Line3D (code
from https://github.com/manhofer/Line3D) and ours.

Fig. 18 shows the results of three methods. The 3D drawing [11] generates a complete set of 3D curves. However,
they are redundant (one continuous curve is reconstructed by many fragmentary curves), unstructured and visually noisy.
Line3D [3] approximates the 3D curves with line segments and fails to represent accurate geometries. Our result enjoys a
decent balance between accuracy and completeness by visual evaluation. The comparisons with other related works (e.g.,
Edge-based SfM [5], Sampling-based [10]) are currently not available due to the lack of open-source implementation.

7. Further explanations of Curve-conformed Delaunay Refinement
The Curve-conformed Delaunay Refinement presented in the main paper Section 3.2 involves computational geometry

background knowledges. As they are out of the scope of the paper, we only put minimal and self-contained content in the
paper. Here, we further explain the backgrounds of proposed algorithm. For more details, we refer readers to [6, 7, 8].

The proposed Curve-conformed Delaunay Refinement is inspired by two previous Delaunay Refinement algorithms,
namely Ruppert’s algorithm [6] and Shewchuk’s algorithm [7]. Here we briefly introduce their algorithms.

Ruppert’s algorithm [6] is proposed initially for quality 2D Delaunay mesh generation. The input of their algorithm
is planar straight line graph (PSLG) and the output is a quality Delaunay mesh conforming to the PSLG. There are four
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Vase

Figure 18: Results of Vase dataset [?]. Left: 3D drawing result [11]. Mid: Line3D [3] result. Right: our result.

stages in the algorithm. 1) They first apply Delaunay triangulation on vertices of PSLG, momentarily ignoring the segment
connections. 2) The second stage is to do the segment recovery: for any segment in PSLG that does not existed in the Delaunay
triangulation, a midpoint vertex of that segment is inserted to the Delaunay triangulation, until all segments of PSLG exist
in the Delaunay mesh. 3) The third stage is simply removing triangles from concavities and holes (i.e., outside the interior
region of PSLG). 4) The fourth stage is the key the algorithm: the Delaunay mesh is iteratively refined by inserting vertices.
The vertex insertion is governed by two rules: a vertex in the midpoint of segment is added if the segment’s diametral circle
encloses any other vertex, and, a vertex in the circumcircle of a triangle is added if the triangle is badly-shaped.

Shewchuk’s algorithm [7] generalized the Ruppert’s algorithm into three-dimensional tetrahedra. The input becomes
piecewise linear complex (PLC) (instead of 2D PSLG) and output is a quality tetrahedra conforming to the input PLC. This
algorithm has three stages only. Their first and third stages are similar to Ruppert’s algorithm, but they combine all vertex
insertion operations into the second stage. Concretely, 1) they first apply Delaunay tetrahedralization on vertices of PLC,
momentarily ignoring segments and facets. 2) The second stage is the key of algorithm: adding the vertex to refine the
tetrahedra by three rules. R1: adding vertex at the midpoint of a segment if its diametric sphere encloses any other vertex.
R2: adding vertex at the center of a diametric sphere of a triangle facet, if the diametric sphere encloses any other vertex.
R3: adding vertex at the center of a tetrahedron if it is badly-shaped. The priority orders from R1, R2 to R3. The specific
tetrahedron shape measurement is defined as radius-edge ratio, which is the ratio between the radius of its circumsphere and
its shortest edge. 3) The third stage is simply removing tetrahedra from concavities and holes (i.e., outside the interior region
of PLC). This algorithm is provably good with a radius-edge ratio threshold value of 2 [7].

The above two algorithms are general algorithms for quality Delaunay triangulation/tetrahedra generation. Our proposed
algorithm can be seen as a variant of above two algorithms. Our three criteria are similar to three rules of vertex insertion
used in Shewchuk’s algorithm. However, we do not need to apply the vertex insertion for facets (R2) as our input is a bunch
of segments only. Other than that, we have another criterion that constrains the volume size by clamping the edge length of
segments, which is necessary for thin structure recovery as our goal.

8. Runtime performance
The runtime performance of six qualitative datasets is shown in Table 1. We separately evaluate two main proposed

components. Our 3D curve reconstruction (Section 2 in the main paper) is compared to two point cloud methods, namely
plane sweep stereo [2] and PMVS [1] and the Line3D method [3]. Line3D method [3] is the initialization of our method and
we view it as our baseline. The manifold surface reconstruction (Section 3 in the main paper) is compared to the baseline
visibility consistent surface reconstruction [12].

The main computation of our 3D curve reconstruction spends on the Line3D initialization. As can be seen in Table 1,
our algorithm spends 7∼25% more running time than baseline method, which accounts for the optimization and expansion
steps. As for our manifold surface reconstruction step, it has the same theoretical complexity as the baseline method, with
additional vertices (generated in the Delaunay refinement) in tetrahedra. The actual increased time is 10∼28%. Overall, the
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Table 1: Running time (unit: seconds) on six datasets. The “increased time (%)” means running time of our method compared to baseline.

Dataset #img resolution
PMVS

[1]
Sweep

[2]
Lines [3]
(baseline)

Curves
(ours)

Increased
time (%)

Vu [12]
(baseline) Ours Increased

time (%)
chair 41 1280 x 960 62 18 6 7 16.67% 25 32 28.00%
windmill 27 4000 x 3000 457 217 84 103 22.62% 120 142 18.33%
pylon1 32 4000 x 3000 512 230 96 120 25.00% 123 145 17.89%
pylon2 54 4000 x 3000 991 408 120 141 17.50% 182 207 13.74%
bridge 117 4000 x 3000 2724 1440 280 332 18.57% 318 358 12.58%
wires 296 4000 x 3000 7538 2988 574 606 7.45% 524 579 10.50%

runtime performance of proposed method is reasonable.
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