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Abstract

Multi-view stereo (MVS) depends on the pre-determined
camera geometry, often from structure from motion (SfM) or
simultaneous localization and mapping (SLAM). However,
cameras may not be locally optimal for dense stereo match-
ing, especially when it comes from the large scale SfM or
the SLAM with multiple sensor fusion. In this paper, we
propose a local camera refinement approach for accurate
dense reconstruction. Firstly, we refines the relative geome-
try of independent camera pair using a tailored bundle ad-
justment. The refinement is also extended to a multi-view
version for general MVS reconstructions. Then, the non-
rigid dense alignment is formulated as an inverse-distortion
problem to transfer point clouds from each local coordinate
system to a global coordinate system. The proposed frame-
work has been intensively validated in both SfM and SLAM
based dense reconstructions. Results on different datasets
show that our method can significantly improve the dense
reconstruction quality.

1. Introduction

Modern methods of image-based 3D reconstruction sep-
arate the problem into camera geometry reconstruction and
multi-view stereo (MVS), where the former one computes
camera parameters of each image capture, passing to the lat-
ter to reconstruct dense representation. Research on MVS
assumes camera parameters are confidently given, and only
focuses on the dense reconstruction part. In fact, the accu-
racy of camera parameter itself is critical to the reconstruc-
tion quality, as the core of stereo is the pixelwise matching
problem with epipolar line constraint. In another word, the
slight inaccuracy of camera geometry would significantly
spoil the quality of the dense reconstruction.
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Figure 1. GC: Global Cameras of standard StM. RCR: our Relative
Camera Refinement method. Top: image pair with 4 matching
points and epipolar lines. Middle: zoom-in point locations and
epipolar lines. Bottom: reconstructed point cloud using global
cameras (left) and our refined cameras (right).

While different benchmarks [36, 40, 17] provide ground
truth camera parameters, in real-world reconstructions the
camera geometry could hardly be perfect for stereo match-
ing. Firstly, for image-based 3D modeling, as images are
usually taken under different settings, scales and illumina-
tions, mismatches of image features are inevitable, and er-



rors would accumulate and propagate to the whole SfM or
SLAM reconstruction. Also, when it comes to a large-scale
SfM, optimizing thousands of hundreds of pose parame-
ters is computationally difficult, and the posibility of stuck-
ing in local minima increases as well. Secondly, to make
the camera geometry reconstruction more stable, measure-
ments from other sensors like inertial measurement unit
(IMU) [22, 37, 23], global positioning system (GPS) [46]
and ground control points (GCP) are fused with the image-
based visual measurements. The fusion of different mea-
surements is widely applied in SLAM research, aiming for
a stable and smooth camera trajectory reconstruction. How-
ever, due to its real-time nature, the accuracy of its camera
pose is often not eligible for high-quality dense reconstruc-
tion. This long exsisting problem, however, attracts only a
few attention from previous researchers [15, 48].

In our work, we highly consider the importance of the ac-
curate camera geometry for dense reconstruction. Instead of
directly using the camera pose yielded from SfM or SLAM
for dense reconstruction, we add one more step in between,
i.e., the proposed Relative Camera Refinement (RCR). RCR
fine-tunes the relative geometry of selected camera pairs,
in order to increase the camera pose accuracy for high-
quality dense reconstruction. More specifically, we apply
a tailor-made bundle adjustment to iteratively refine each
camera pair with respect to camera intrinsic, radial distor-
tion and relative camera pose. Fine-scale features are pro-
gressively introduced to the camera refinement with care-
ful mismatches filtering. After the pairwise refinement, we
extend the RCR to the multi-view for general MVS recon-
structions. Reported by the statistics in our experiments, the
proposed method is able to robustly reduce the average re-
projection error from around 2 pixels to around 0.3 pixel,
which is crucial to the high-quality dense reconstruction.

One challenge brought by the local camera refinement is
how to align dense results from different local coordinate
systems back to a globally consistent coordinate system,
since each camera group is optimized independently. This is
not a concern for previous dense reconstructions where only
one global camera system is used. But here, the transfor-
mations between point clouds from different camera groups
are non-rigid and difficult to solve. To tackle this problem,
we develop a novel dense alignment strategy to registers all
dense results back to one global camera system. The key
idea is to convert pixel matches in the local coordinate sys-
tems to a global coordinate system via inverse distortion,
and then use the global cameras to triangulate the matches
to get 3D points. With the proposed non-rigid alignment, lo-
cal dense reconstructions are able to be consistently merged
together for later processes.

The main contributions of this paper can be summarized
as twofold:

e Proposing the RCR method to produce the precise rel-

ative camera geometry for stereo matching, which is
then extended to a multi-view version that is crucial to
the high quality dense reconstruction.

e Solving the non-rigid point cloud alignment problem
between the local and the global camera systems by
converting it into an inverse distortion problem.

2. Related Work

Global Camera Geometry Reconstruction Recon-
structing accurate camera geometry for MVS is a widely
studied topic in computer vision. Two important categories
of techniques for camera geometry recovery are the SfM
methods and the SLAM methods. The SfM methods
usually run in offline and have achieved great success in
the past decade, making large scale 3D reconstructions
possible [38, 18, 2, 14, 9, 27, 35]. Bundle adjustment
(BA) [42] is applied in the last step of SfM to minimize
the reprojection error and refine camera parameters. Apart
from the offline SfM methods, in robotic areas researchers
apply the SLAM methods to reconstruct the camera
odometry in real-time [10, 21, 30, 32, 12]. To eliminate
the drift problem in odometry reconstructions, different
sensors are fused together to get a robust trajectory.
For example, in the context of visual-inertial odometry,
filtering based techniques [29, 7, 19] or keyframe-based
non-linear optimizations [23, 37, 20, 31] are applied to fuse
the visual-inertial measurements, producing very stable
trajectories over long periods of time. However, it also
leads to oversmoothing of the individual poses, which in
turn leads to problems during stereo matching.

Camera Refinement for MVS  Other methods have been
proposed to provide an even better geometry for MVS re-
construction. Lhuillier and Quan [24] propose a quasi-
dense approach to reconstruct the geometry in an iteratively
growing manner. Furukawa et al. [15] rescales images to
appropriate resolutions so as to minimize the reprojection
error, and utilizes selected dense points to help refine the
camera geometry for PMVS [16]. Delaunoy et al. [11] pro-
pose to minimize photometric reprojection error between
a generated model and the observed images to jointly re-
fine cameras and model shape. These works, while refining
camera parameters, maintain a globally consistent camera
system for later MVS processes.

Instead of optimizing everything globally, the divide-
and-conquer strategy is commonly used in the large-scale
3D reconstructions. The authors of [39, 33] partition the
large BA problem into smaller and better conditioned sub-
problems. To handle the scalability problem of MVS re-
construction, researches divide cameras into clusters [5, 14,
18, 8, 47] to partition the large-scale reconstruction problem
into several smaller ones. The most related work to ours is



the method proposed by Zhu et al. [48], which partitions
large scale SfM to several local clusters, and applies the lo-
cal camera refinement within each cluster for better dense
reconstruction. However, in this paper the alignment step
is ignored after the individual local camera refinement, re-
sulting the potential dense stratification problem in the final
reconstruction. In this paper, we again stress the importance
of the local camera geometry, and proposed an efficient al-
gorithm to solve the global dense alignment problem.

3. Local Camera Refinement

The key component of our local camera refinement is
the robust two-view relative camera refinement (RCR) algo-
rithm described in Section 3.1. Based on the RCR method,
the multi-view camera refinement extensions are discussed
in 3.2.

3.1. Relative Camera Refinement

Pairwise BA A tailor-made pairwise BA is designed as
the basic tool used in our camera refinement. Different
from the general method, given a camera pair {C;, C,},
the pairwise BA fixes the following parameters in the op-
timization: (1) the left camera rotation R;, (2) left cam-
era center X, and (3) the baseline length [;; between the
camera pair. These are to avoid slow convergence and even
shrinking the whole scene to a singularity, since the scene
is up to rotation, translation and scale during the optimiza-
tion. It is noteworthy that the particular choice of fixing
baseline length I;; (instead of the right camera center X, )
is because optimization of relative camera pose would be
restricted if R;, X, and X, are all fixed. In our parame-
terization, the camera center X, of the right camera can be
expressed by two rotation angles 6 (yaw and pitch) of the
baseline. Let P = {P;} denotes the 3D point positions and
p = {p;;} its corresponding feature position in image I,
K = {x., f} represents the camera intrinsic where x.. is the
principle point and f the focal length, x = {k1, k2, k3} de-
notes the camera distortion, then our BA can be formulated
as:

arg P,RI?,%I}KW Z Z p(ﬂ'cj (Pz) _ p”)Q (1)
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Where p(+) is the robust penalty and:
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The operation ([z,y, 2]} = [z/z,y/#] in equation 2 con-
verts the homogeneous coordinate to the image coordinate.
F(+) is the distortion equation and equation 2 projects a 3D
point to its image coordinate. In solving the minimization

problem, 3D point positions {P;} are initialized by trian-
gulating the feature matches between the camera pair. As
fixing R, X,,, ly; already reduces the DoF of the system
by 7, and the input geometry provides a good initialization,
our pairwise BA is able to converge in a small number of
iterations (< 10) in most cases.

Progressive Refinement One factor affecting the BA ac-
curacy is the uncertainty of the feature center coordinate.
Features with larger scales are usually more robust to be
matched between images with large pose variances, but pro-
vide less accurate measurements for the feature center co-
ordinates. In our camera refinement, we prefer to select the
fine-scale features to achieve utmost relative camera accu-
racy.

Algorithm 1 Relative Camera Refinement
Input: Global coarse geometry from SfM.
Output: Optimal relative geometry.
Divide putative matches into groups {M;, My, M3} by
match scales. Compute the average scales {3;} for each
group of matches.
for M; from coarse to fine scale do
1st BA with Huber loss:
Filter matches in M; whose Sampson error e > §;.
Refine cameras using M; and BA with Huber loss.
2nd standard L2 BA:
Recompute Sampson error and filter M; again.
Perform standard BA with new matches.
end for

For SfM based reconstruction, firstly SIFT features
are extracted in the full scale-space, and then the puta-
tive matches are computed using the approximate nearest
matching method [26] (this two steps should have been
done in the SfM). An observation is when feature scale goes
down, the match can provide a more accurate measurement
but is more vulnerable to mismatch. According to this, we
cluster matches into &k groups {Mg, My, ..., M_1} by the
maximum scale of its two features s; = max(s1,s2). The
camera pair will then be refined using each match group
from coarse to fine scale. In our experiments, we set k = 3
and My = {m,‘|$i > 8},M1 = {mt|4 < s < 8},
My = {m; | s; < 4}. In between refinements using
matches with different scales, the refined geometry from
coarse-scale matches will be used to filter the finer scale
matches for the next round refinement. The Sampson error
e with distortion consideration is applied to filter the mis-
matches:

o METE)TEFE )]
I(F= (P)) " FII? + [P (Fi (p)) 2

Where F is the fundamental matrix between two cameras.
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{pi, p-} are feature coordinates in the original distorted
images, and {F,;'(p;), F.*(p,)} the corresponding fea-
ture coordinates in the undistorted images. The inverse
distortion F 1(-) is solved using method described in 4.2.
Matches with Sampson error larger than the average scale s;
of the group will be filtered. Moreover, inside each round of
refinement, we apply the BA twice. The first BA is carried
out with the Huber Loss penalty as to tolerate mismatches
that satisfy the epipolar geometry. The matches will then be
filtered again with the new Sampson errors, and the second
standard BA is applied with the newly filtered matches. The
overall description of our RCR is given in Algorithm 1.

3.2. Multi-view Extension

For N-view (N > 2) stereo algorithms where refined
cameras from RCR can not be directly applied, we extend
our camera refinement to a general multi-view version for
existing MVS methods. As accurate feature matches can
be recovered using the RCR method, for each image pair
in the cluster, we apply RCR to establish the reliable two-
view feature matches. Multi-view matches are then recon-
structed by merging two-views if the same feature appears
in different image pairs. We then perform a standard local
BA within the cluster. For the initialization of the BA, we
initialize the camera parameters using global SfM cameras,
and 3D point positions by triangulating the above two-view
and multi-view matches.

The critical point to our local camera refinement is the
sufficient fine-scale feature matches introduced in pairwise
RCR, which have been usually overshadowed by the global
larger-scale features in SfM reconstruction. Though mis-
matches might exists, they have already satisfied the epipo-
lar line constrain in the RCR step, and would not affect the
quality of camera geometry refinement. Compared to the
formal local refinement method [48], our method consis-
tently keeps a smaller reprojection error and guarantees the
better refinement quality. It is also important to note that
ours is an efficient algorithm, and the total running time
of the camera refinement is neglectable to the dense recon-
struction process itself.

4. Globally Consistent Dense Reconstruction
4.1. Local Dense Reconstruction

The refined cameras are first used to undistort images
within the image pair/cluster. Then the MVS algorithms
could be applied to generate the local dense reconstructions.
We choose plane sweeping stereo [44] to generate dense
point cloud in our pipeline. The purposes of choosing plane
sweep stereo are twofold: (1) its two-view version is the
simplest form stereo matching, whose dense results can di-
rectly reveal the local geometry quality; (2) plane sweeping
is very suitable for real-time applications thanks to its easy

parallelism, which is commonly used in SLAM based stereo
reconstructions [34, 41, 22].

Inspired by [45, 6], we applied the weighted zero mean
normalized cross correlation (weighted ZNCC) for match-
ing cost computation. Let AV}, and \V; be two patch windows
centered at pixels p. and q.. The matching cost between
these two patches are defined as:

ZpENp,qENq w(p pf)( )( )
VEpen, I = I @qe (I, — I,)?

Where p, q are the corresponding pixels in two windows
1, 1, the intensities of these two pixels, and I, q the
average intensities of windows A, and N,. The We1ght

I
w(p,pe) = exp(!

C= (5)

M) with a regularization factor
7

~v = 12 is used to penalize pixels that differ a lot from the
left center pixel p., which could be seen as a soft segmen-
tation of the matching windows. The final matching cost
of between p. and q. is aggregated from patches from four
different scales as recommended by the original paper [44]:
Cpg = ZU C',. To filter out some obvious outliers, a KD
tree is built upon the point cloud. We calculate the mean dis-
tance [ from one point to its k nearest neighborhoods where
k = 15. Points with [ > 4[ will be filtered, and here { is the
mean of [ among all dense points. For SLAM based dense
reconstruction, we also use images in the sliding key-frame
window to validate and filter the point cloud as proposed in
[41].

4.2. Global Dense Alignment

Point clouds from local camera geometries are mutually
inconsistent. As the camera parameters has been altered
during the refinement, aligning locally reconstructed point
clouds is non-rigid. In our paper, we register points from
different coordinate system back the one globally consis-
tent camera system, which is reformulated into a matching
registration problem and finally solved via inverse distor-
tion.

Matching Registration We first review the process of
how a 3D point can be produced in a given camera system:
(1) finding the matching pixels that refer to the same 3D
point in different images; (2) triangulating these pixels to
generate a 3D point with the given camera parameters. An
observation from this process is once the pixel matches in
global camera system are determined, a globally consistent
point can be reconstructed. So the dense alignment problem
can be converted to the registration of pixel matches in the
relative camera system to a global camera system.

Let us introduce three images {Iy, I, I} that actually
refer to the same image: (1) the original distorted image
Iy; (2) the global image I,, which is undistorted from
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Figure 2. Illustration of the process of matching registration. From
left to right: the refined local image I, undistorted using the re-
fined local cameras, the original distorted image Iy, and the global
image I, undistorted using the global cameras. The coordinates
mappings are shown as the arrows.

Iy using the global camera Cg; (3) the refined local im-
age I,, which is undistorted from I using the refined lo-
cal camera C,. For a pixel p, we define {po, pg, pr} as
its corresponding pixel coordinates in these three images,
and {ug, uy, u, } the corresponding image coordinates. Ac-
cording to the distortion equation we have ug = Fj, (uy),
ug = Fx, (u,). Combining the pixel-image coordinate re-
lation that u = (p — x.)/ f, the conversion between p4 and
P can be expressed as:

M)) + Xe, (6)

Jr
Where x, X, f are camera distortion, camera center and
focal length respectively. Figure 2 illustrate the distortion
relationship within these three images.

Based on the matching registration, our dense alignment
strategy can be summarized as: (1) using function D(-) to
convert pixel matches from refined local images to global
images; (2) using the global cameras to triangulate the
matches to get the corresponding 3D points. In this way,
the dense results from the different local camera systems
can be registered together in the global SfM camera sys-
tem. An example of our global dense alignment is shown in
Figure 3.

Py :D(pr) = fg '-F;;il(fnr(

Inverse distortion The key of applying equation 6 is how
to solve the inverse distortion F,; 1 (). As there is no closed-
form solution for 7 !(-), our method is to formulate it into
an optimization problem with proper initialization. Given
the distortion relation uy = F(uy), we define the mini-
mization problem as:

arg nlllin [lug — Fry (uy) H2 7

This non-linear least square problem could have multiple
local minimums as the distortion equation is a 7-order poly-
nomial. In this case, the initialization of uy is very impor-
tant to the final solution. Luckily the distortion of the local
refined camera is closed to that of the global camera, so the
image coordinate u, in the relative image I, can be used to

Figure 3. The point clouds from two stereo pairs before and after
dense alignment. Left: the red and the blue point clouds are in-
consistent before the alignment. Right: two point clouds are well
aligned after employing the proposed method.

initialize u,. With this good initialization, the minimization
is able to quickly converge to the correct local minimum.
In all our experiments, the optimization converges within
3 iterations using Levenberg-Marquardt algorithm, which
makes our dense alignment an efficient process.

5. Experiment

We test our method on both SfM based dense reconstruc-
tion and the SLAM based dense reconstruction. For SfM
based reconstruction, we use the open source SfM software
openMVG [28] to recover the global camera geometry for
all real-world datasets. For SLAM based reconstruction, we
apply the visual-inertial odometry provided by the Apple
ARKit [1] to get the camera parameters. Our bundle adjust-
ment is implemented using Ceres Solver [3] and the inverse
distortion is solved by levmar [25]. The image pairs used in
our reconstructions are selected silimar to method [18]. To
better illustrate the dense reconstruction quality, we apply
the mesh reconstruction algorithm [43] to reconstruct the
mesh surface. The proposed method is implemented and
evaluated on a PC with 8-Core Intel i7-4770K processor and
32GB memory. A single NVIDIA GTX980Ti graphic card
is used to accelerate the dense and mesh reconstructions.

5.1. SfM Based Dense Reconstruction

Synthetic Datasets. Firstly, we demonstrate the impor-
tance of accurate camera geometry for dense reconstruction
using synthetic data. Given the ground truth cameras of
fountain-P11 and Herz-Jesu-P8 datasets [40], we slightly
perturb the camera parameters to simulate inaccurate SfM
results. We use the term noise level to measure the inaccu-
racy degree. Let 3 be Eular angles of the camera rotation,
X . the camera center, X .. the average center of all cameras,
f the focal length and « the camera distortion. At noise
level ¢ ¢z = 0,1,...,10), camera parameters are perturbed



. . . reprojection error | #matches / pair oints / pair running time / pair

dataset #images | resolution | #pairs CFi)C : RCR GC RCIlJQ gg %CR RCR | plane S\%veepingp alignment
fountain-P11 11 6.3M 10 - 0.121 - 3809 0.187M | 0.459M | 4.32s 1.56s 1.37s
Herz-jesu-P8 8 6.3M 7 - 0.132 - 3629 0.159M | 0.383M | 3.41s 1.13s 1.28s

House 34 12M 35 0.770 0.239 150 504 0.204M | 0.226M | 1.20s 2.31s 0.518s

Factory 103 12M 103 | 0.904 0.181 514 2074 0.426M | 0.508M | 2.43s 1.39s 1.91s

City A 48285 24M 43521 | 1.527 0.343 123 1483 0.831M | 0.941M | 3.24s 31.7s 3.63s

City B 98113 50.3M 91581 | 2.153 0.398 105 3205 24IM | 2.85M | 3.58s 19.4s 9.27s

Table 1. Statistics of all experiment datasets. The cameras of fountain-P11 and Herz-jesu-P8 are perturbed

from ground truth cameras at

noise level 8. GC represents global cameras, and RCR represents the relative cameras from our RCR methods. GC method and RCR
method are compared on the number of features used for camera estimation, reprojection errors after BA, average dense point numbers and

algorithm running time.

as: 3 =0+ [%6, %6, %5]T, X. = Xc+io%5(chXc),
f=f-0+i-d)andk = k- (1+4-0), where J is a
small random number that uniformly distributed in range
[-1073,1073]. At each noise level, we reconstruct the
dense point clouds 10 times with independently perturbed
cameras. To quantify the point cloud accuracy, we em-
ploy the Hausdorff distance [4] to measure the difference
between the dense point cloud and the given ground truth
mesh, and the average Hausdorff distance among all 10 re-
constructions is regarded as the dense reconstruction error.
Also, the average point number at each noise level is chosen
as the indicator for the local dense reconstruction quality.

The quantitative comparison is demonstrated in Figure
4. As SfM inaccuracy (noise level) increases, the num-
ber of dense points dramatically decreases if the perturbed
cameras are used. However, after applying our RCR, the
number of reconstructed dense points remains unchanged
in whichever noise level. This indicates that our refinement
consistently produces the locally precise geometry for the
local dense reconstruction. Nevertheless, as the noise level
goes up, the inaccurate global camera system serves as a
less precise camera system for dense alignment, which in-
evitably results in higher Hausdorff error. Overall, our RCR
consistently keeps a lower Hausdorff error comparing to the
standard approach without RCR.

Real-world Datasets. We test our RCR method in four
real-world datasets, namely, House, Factory, City A and
City B datasets. House and Factory datasets contain 34 and
103 images at 4K resolution respectively. One difficulty of
reconstructing these two scenes is to recover the repetitive
structures in building roofs. Features detected in repetitive
areas are vulnerable to mismatch thus accurate local camera
geometries are hard to achieve, which will again affect the
dense reconstruction. In the selected image pair with global
SfM cameras, the epipolar lines deviate about 2 pixels from
the matching points. However, with our RCR, epipolar lines
become precise for all points, and as a result, the dense point
cloud is clean and complete even in the highly repetitive re-
gion. Detailed results on dense and mesh reconstructions of
these two datasets can also be found in Figure 8.

Herz-Jesu-P8 fountain-P11
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Figure 4. Quantitative evaluation on point number and Hausdorff
distance changes with increasing SfM noise level.

Figure 5. Comparison on dense reconstructions using RCR cam-
eras and global cameras. The left result are reconstructed using the
ground truth cameras, while the middle one is using the perturbed
cameras at noise level 8, and the right one is reconstructed using
the perturbed cameras with our RCR method.

City A and City B are two very large datasets that contain
48285 images at 6000 x 4000 resolution and 98113 images
at 8688 x 5792 resolution respectively. As we have men-
tioned, in large scale SfM reconstructions, features with
larger scales are preferred. Also, other compromised ap-
proaches like feature resampleing [13] will also affect the
SfM quality. Starting from a small region in each dataset,
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Figure 8. Dense and mesh reconstructions of House and Factory datasets with plane sweeping stereo. From top to bottom are reconstruc-
tions using SfM and our RCR method. Our method significantly improves the dense and mesh reconstructions for these two dataset. The

orange box shows the misalignment problem remains in paper [48].

Figure 6. Dense reconstructions of Ciry A dataset. The comparison
between SfM method (left) and ours (right) clearly demonstrates
the effectiveness of our RCR method.
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Figure 7. Reprojection errors of cameras and reconstructed point
numbers with increasingly larger subset of images using SfM (red)
and our RCR method (blue).

we perform the SfM algorithm to reconstruct the camera
geometries with progressively larger subset of images. For
SfM at different scales, we compare the dense reconstruc-
tions using SfM cameras with using our RCR method. Fig-
ure 7 shows that the reprojection errors are getting larger

sclusters #images reprojection error Running time/cluster
[cluster | SfM LR Ours | LR | Ours | PMVS | Aligment
House 4 9 0.77 | 0.613 | 0.315 | 3.87 | 6.87 134 1.89
Factory 10 10 0.904 | 0.851 | 0.328 | 5.64 | 285 305 5.13
Campus 164 9 1.32 |1 0.939 | 0408 | 6.21 | 24.6 239 7.31

Table 2. Statistics of experiment on the multi-view extension. Our
local refinement keeps a lower reprojection error compared to the
SfM and LR methods.

and the reconstructed points are becoming lesser within the
selected regions if the SfM scale goes up, indicating that it
is more difficult to ensure the local geometry quality in large
scale SfM reconstruction. With our RCR method, the local
reprojection error is kept to a stable small value. The dense
reconstruction results of CityA from SfM with all images
are shown in Figure 9, where we can see roads and build-
ings are severely deteriorated. In contrast, with our RCR,
the reconstructed roads and buildings become complete and
clean. More results on epipolar lines and dense reconstruc-
tions of the two cities can be found in the supplementary
material. And statistics of the reconstructions of all datasets
can be found in Table 1.

Multi-view evaluation We evaluate the multi-view exten-
sion of our method using the patch-based multi-view stereo
(PMVS [16]). The cameras are divided into small groups
by the camera clustering algorithm CMVS [14]. We com-
pared the proposed method with the SfM method as well
as the local refinement method (LR method [48]), which
uses a simple local BA to refine the cameras and ignores
the dense alignment step. Table 2 shows the reconstruction
statistics of House, Factory datasets, where we can find that
our multi-view extension keeps a lower reprojection error
than the SfM and LR methods. Visual comparisons on the
dense and mesh results can be found in Figure 9, which
clearly shows the importance of both the local camera re-
finement and the global dense alignment steps.



Figure 9. PMVS results using three different methods. The orange
areas clearly shows the importance of global dense alignment.

5.2. SLAM Based Dense Reconstruction

We also test our method on the SLAM based dense re-
construction. The ARKit [1] is a new commercial IMU-
SLAM system that runs on IOS equipment. As we have
mentioned, the fusion of the IMU and visual measurements
increase the stability and smoothness of camera trajectory,
however it decreases the accuracy of camera poses, which
will cause trouble to the stereo matching. We export camera
poses and video frames from ARKit and follow the dense al-
gorithm of method [41] to reconstruct the point cloud. Im-
ages are resized to 640 x 360 resolution and we perform
plane sweeping for the new key-frame to generate the depth
map. The past key-frames in the sliding window are used to
validate each pixel of the newly generated depth map.

To mimic the real-time performance of SLAM system,
we detect the ORB feature proposed in [30] rather than
the SIFT feature for camera refinement. Considering the
camera intrinsic and the distortion in the SLAM system are
known beforehand, our pairwise BA can be carried out by
also fixing the camera intrinsic and the distortion. Also,
we perform the pairwise BA with all features at once rather
than the progressive refinement as mentioned in section 3.1.
In the dense alignment step, because the intrinsic and the
distortion are fixed, the matching registration step can be
skipped (p; = p;), and we only need to triangulate the
local pixel matches using the global SLAM cameras. The
camera refinement and dense alignment in the SLAM sys-
tem are much more efficient compared to the proposed one
for SfM system, and will not affect the real-time perfor-
mance of the SLAM system.

The reconstruction results are shown in Figure 10. We
can see the direct reconstructions with SLAM cameras are
with very low quality (totally 190, 884 points). With our
camera refinement and dense alignment, the number of re-
constructed points is dramatically increased to 749, 119. We
also show the reconstruction result with camera refinement
only, and we can obviously observe the dense stratification

B 2 - P =S
Figure 10. SLAM based dense reconstructions. Left: reconstruc-
tion from direct SLAM cameras; Middle: reconstruction with only
camera refinement. Right: the proposed method with both camera
refinement and dense alignment.

in the dense reconstruction.

5.3. Discussion

Running Time. Table 1 and 2 report the running time of
each step in the reconstruction pipeline. For the two-view
method, the running time of our RCR and alignment are at
the same level with the GPU-based plane sweeping stereo.
For the multi-view extension, although performing the RCR
for every image pair within the cluster takes a longer time
than the simple LR method, the total running time of the ad-
ditional refinement and alignment is still an order of mag-
nitude faster than the dense reconstruction algorithm itself,
and is negligible to the whole reconstruction process. For
the SLAM based reconstruction, the refinement can be car-
ried out extremely fast as mentioned in section 5.2, and can
be run in real-time for the key-frame based SLAM system.

Limitations. The dense alignment merges local dense re-
constructions to the global camera system, which is based
on the assumption that the STM or SLAM still maintains a
globally consistent camera system. One potential problem
is that, if the SfM or SLAM result is of extremely low qual-
ity, point cloud stratification will still occur after the dense
alignment. However, in our experiments, both OpenMVG
and Apple ARKit are able to provide qualified global cam-
eras for the dense alignment.

6. Conclusion

We have presented a dense reconstruction framework
that collaborates the local fine cameras geometry and the
global cameras geometry for accurate dense reconstruc-
tions. Two novel components, the local camera refinement
and the global dense alignment, have been introduced as
the additional steps to the traditional dense reconstruction
pipeline. Intensive experiments on both SfM and SLAM
based stereo reconstructions have demonstrated that our
method is able to significantly improve the dense recon-
struction quality.
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