
Supplementary Material for “MVSNet: Depth
Inference for Unstructured Multi-view Stereo”

1 MVSNet Architecture

While in the main paper we have described the network design in Sec. 3, here
we show the detailed architecture of MVSNet in Table 1.

Table 1: Detailed architecture of MVSNet, where K denotes the kernel size, S the kernel
stride and F the output channel number. As in the main paper, N, H, W, D represents
input view number, image width, height and depth sample number respectively

Ouput Layer Input Output Size

{Ii}Ni=1 N × H × W × 3

Image Features Extration

2D 0 Conv2D+BN+ReLU, K=3x3, S=1, F=8 Ii H × W × 8
2D 1 Conv2D+BN+ReLU, K=3x3, S=1, F=8 2D 0 H × W × 8
2D 2 Conv2D+BN+ReLU, K=5x5, S=2, F=16 2D 1 1⁄2H × 1⁄2W × 16
2D 3 Conv2D+BN+ReLU, K=3x3, S=1, F=16 2D 2 1⁄2H × 1⁄2W × 16
2D 4 Conv2D+BN+ReLU, K=3x3, S=1, F=16 2D 3 1⁄2H × 1⁄2W × 16
2D 5 Conv2D+BN+ReLU, K=5x5, S=2, F=32 2D 4 1⁄4H × 1⁄4W × 32
2D 6 Conv2D+BN+ReLU, K=3x3, S=1, F=32 2D 5 1⁄4H × 1⁄4W × 32
Fi Conv2D, K = 3x3, S=1, F=32 2D 6 1⁄4H × 1⁄4W × 32

Feature Volumes Construction

{Vi}Ni=1 Differentiable Homography Warping {Fi}Ni=1 N × 1⁄4H × 1⁄4W × D × 32

Cost Volume Construction

C Variance-based Cost Metric {Vi}Ni=1
1⁄4H × 1⁄4W × D × 32

Cost Volume Regularization

3D 0 Conv3D+BN+ReLU, K=3x3x3, S=1, F=8 C 1⁄4H × 1⁄4W × D × 8
3D 1 Conv3D+BN+ReLU, K=3x3x3, S=2, F=16 3D 0 1⁄8H × 1⁄8W × 1⁄2D × 16
3D 2 Conv3D+BN+ReLU, K=3x3x3, S=1, F=16 3D 1 1⁄8H × 1⁄8W × 1⁄2D × 16
3D 3 Conv3D+BN+ReLU, K=3x3x3, S=2, F=32 3D 2 1⁄16H × 1⁄16W × 1⁄4D × 32
3D 4 Conv3D+BN+ReLU, K=3x3x3, S=1, F=32 3D 3 1⁄16H × 1⁄16W × 1⁄4D × 32
3D 5 Conv3D+BN+ReLU, K=3x3x3, S=2, F=64 3D 4 1⁄32H × 1⁄32W × 1⁄8D × 64
3D 6 Conv3D+BN+ReLU, K=3x3x3, S=1, F=64 3D 5 1⁄32H × 1⁄32W × 1⁄8D × 64
3D 7 Deconv3D+BN+ReLU, K=3x3x3, S=2, F=32 3D 6 1⁄16H × 1⁄16W × 1⁄4D × 32
3D 8 Addition 3D 7 + 3D 4 1⁄16H × 1⁄16W × 1⁄4D × 32
3D 9 Deconv3D+BN+ReLU, K=3x3x3, S=2, F=16 3D 0 1⁄8H × 1⁄8W × 1⁄2D × 16
3D 10 Addition 3D 9 + 3D 2 1⁄8H × 1⁄8W × 1⁄2D × 16
3D 11 Deconv3D+BN+ReLU, K=3x3x3, S=2, F=8 3D 0 1⁄4H × 1⁄4W × D × 8
3D 12 Addition 3D 11 + 3D 0 1⁄4H × 1⁄4W × D × 8

P Conv3D, K = 3x3x3, S = 1, F = 1 3D 12 1⁄4H × 1⁄4W × D

Depth Map Regression

Dinit Soft Argmin P 1⁄4H × 1⁄4W × 1

Depth Map Refinement

2D Cat Concatenation Dinit, Ii 1⁄4H × 1⁄4W × 4
2D 7 Conv2D+BN+ReLU, K=3x3, S=1, F=32 2D Cat 1⁄4H × 1⁄4W × 32
2D 8 Conv2D+BN+ReLU, K=3x3, S=1, F=32 2D 7 1⁄4H × 1⁄4W × 32
2D 9 Conv2D+BN+ReLU, K=3x3, S=1, F=32 2D 8 1⁄4H × 1⁄4W × 32
Dres Conv2D+BN+ReLU, K=3x3, S=1, F=1 2D 9 1⁄4H × 1⁄4W × 1

Drefined Addition Dinit, Dres
1⁄4H × 1⁄4W × 1
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2 Benchmarks

2.1 DTU Dataset

Table 2: Evaluation results on the 22 evaluation scans. MVSNet with smaller input
image size even perform better in accuracy and overall quality as the given ground
truth point clouds are only partially complete

Mean Acc. Med. Acc. Mean Comp. Med. Comp. Overall

Camp [2] 0.853 0.496 0.559 0.196 0.706
Furu [3] 0.613 0.324 0.941 0.464 0.777
Tola [8] 0.342 0.21 1.19 0.492 0.766

Gipuma [4] 0.283 0.201 0.873 0.313 0.578
SurfaceNet [5] 0.45 0.294 1.04 0.285 0.745

MVSNet (1600x1184) 0.396 0.267 0.527 0.282 0.462
MVSNet (1280x1024) 0.371 0.248 0.534 0.277 0.443

Quantitative Results The Matlab evaluation script provided by DTU dataset
[1] measures the mean accuracy, medium accuracy, mean completeness and
medium completeness. Here we list the full results on the evaluation set in Table
2. We notice that SurfaceNet use their own script for the evaluation, in this table
we stick to the original evaluation code from DTU dataset.
Accuracy vs. Completeness There is always a trade-off between the accuracy
and the completeness in MVS reconstruction. As for our MVSNet, we have
achieved a significantly improvement in reconstruction completeness than other
methods. However, this also brings a “problem” in the quantitative evaluation:
our point clouds are even more complete than the ground truth point clouds
(Fig. 1), which reduces the reconstruction accuracy in the evaluation.

To find out how the incomplete ground truth data would affect the evaluation
metrics, we use smaller images that we set W = 1280, H = 1024 (in the main
paper W = 1600, H = 1184) to reconstruct the point cloud. In this setting
MVSNet will generate results with roughly the same complete level to the ground
truth point clouds. It is reported in Table 2 that, although the point cloud is
visually less complete than reconstruction with full resolution images (Fig. 1),
smaller images produces better accuracy and overall quality performance.
Qualitative Results Finally, Fig. 2 shows the point cloud results of the re-
maining 16 evaluation scans that have not been shown in the paper or Fig. 1.

2.2 ETH3D Dataset

We also test MVSNet on the ETH3D benchmark [7], low-res dataset. Similar to
the evaluation on Tanks and Temples dataset, we use the model trained on DTU
without fine-tuning. W ×H ×D are set to 928 × 480 × 320 for the testing. For
quantitative evaluation, MVSNet ranks 5th on the benchmark. The qualitative
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(a) W = 1600, H = 1184 (b) W = 1280, H = 1024 (c) Ground Truth
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Fig. 1: Comparison on MVSNet reconstructions on (a) full resolution setting (main pa-
per), (b) small resolution setting and (c) ground truth point clouds. The full resolution
setting produces point clouds even more complete than the ground truth point clouds

Fig. 2: Point cloud results of the remaining 16 evaluation scans, DTU dataset [1]. From
top left to bottom right: scans {4, 10, 13, 15, 23, 29, 32, 33, 34, 48, 49, 62, 77, 110,
114, 118}
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result of storage room 2 is shown in Figure 3, where MVSNet produces complete
result especially in those white wall areas.

Fig. 3: Results of storage room 2, ETH3D. Left: Colmap[6]. Right: MVSNet.

3 More Ablation Studies

3.1 Depth Sample Number

We conduct an ablation study on DTU evaluation set that we fix W , H, Dmin,
Dmax to 1280, 1024, 425mm, 937mm, and vary the depth sample number D =
128, 192, 256, 320 for reconstructions (resolution = 4mm, 2.67mm, 2mm, 1.6mm
respectively). Table 3 shows that sufficiently high sample resolution (D = 256)
results in better reconstruction quality than low resolutions (D = 128, 192), but
higher than that (D = 320) reaches to a plateau. We believe 2mm is the effective
depth resolution for DTU dataset.

3.2 Lighting Condition

We demonstrate in this experiment that MVSNet is robust to lighting changes.
In the main paper, MVSNet is trained on consistent lighting conditions (the N
images of one training sample are selected from the same lighting condition), and
we perform all evaluations using the uniform lighting. We conducted one more
ablation study on DTU evaluation set that we replaced the 49 uniform lighting
images in the scan with the random lighting images (randomly chosen from 7
lighting conditions) for evaluation. Table 3 shows that the random lighting only
results in little performance drop.

3.3 Baseline Angle

In the main paper we choose θ0 = 5, σ1 = 1, σ2 = 10 and select the best N −
1 views for each reference image. To determine the generalization w.r.t. the
baseline length/angle, we changed θ0 to 10, 20 and 30. Table 3 shows MVSNet
still produces high quality results for large baseline angle θ0 = 20.
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Table 3: Generalization w.r.t. depth sample number, lighting condition and baseline
angle.

Setting
<1mm <2mm

Accu. Comp. f-score Accu. Comp. f-score

MVSNet 86.46 72.13 75.69 91.06 75.31 80.25

w. r. t. depth sample number (W = 1280, H = 1024)

D = 128 75.31 61.97 66.44 91.32 69.30 77.00

D = 192 89.80 68.44 75.80 94.63 72.55 80.21

D = 256 91.02 69.68 77.07 94.75 73.82 81.21

D = 320 89.86 69.64 76.72 94.42 74.08 81.32

w. r. t. lighting condition

random
lighting

85.68 70.49 75.26 90.45 74.68 79.90

w. r. t. baseline angle

θ0 = 10 85.83 70.96 75.57 90.43 74.78 79.86

θ0 = 20 87.70 64.16 72.01 93.77 69.07 77.37

θ0 = 30 84.63 57.02 66.35 91.12 63.21 72.79
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